Some aspects of random utility, extreme value theory and multinomial logit models
نویسندگان
چکیده
منابع مشابه
Multinomial logit random effects models
This article presents a general approach for logit random effects modelling of clustered ordinal and nominal responses. We review multinomial logit random effects models in a unified form as multivariate generalized linear mixed models. Maximum likelihood estimation utilizes adaptive Gauss–Hermite quadrature within a quasi-Newton maximization algorithm. For cases in which this is computationall...
متن کاملSemantic Scene Segmentation using Random Multinomial Logit
We introduce Random Multinomial Logit (RML), a general multi-class classifier based on an ensemble of multinomial logistic regression models, and apply it to the task of semantic image segmentation. The algorithm is simple, can be trained efficiently, and has near realtime runtime performance. RML combines the desirable properties of multinomial logistic regression, being stable and theoretical...
متن کاملMultinomial logit models with implicit variable selection
Multinomial logit models which are most commonly used for the modeling of unordered multi-category responses are typically restricted to the use of few predictors. In the high-dimensional case maximum likelihood estimates frequently do not exist. In this paper we are developing a boosting technique called multinomBoost that performs variable selection and fits the multinomial logit model also w...
متن کاملRandom Forests for multiclass classification: Random MultiNomial Logit
Several supervised learning algorithms are suited to classify instances into a multiclass value space. MultiNomial Logit (MNL) is recognized as a robust classifier and is commonly applied within the CRM (Customer Relationship Management) domain. Unfortunately, to date, it is unable to handle huge feature spaces typical of CRM applications. Hence, the analyst is forced to immerse himself into fe...
متن کاملVariable selection in general multinomial logit models
The use of the multinomial logit model is typically restricted to applications with few predictors, because in high-dimensional settings maximum likelihood estimates tend to deteriorate. In this paper we are proposing a sparsity-inducing penalty that accounts for the special structure of multinomial models. In contrast to existing methods, it penalizes the parameters that are linked to one vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics
سال: 2011
ISSN: 1744-2508,1744-2516
DOI: 10.1080/17442508.2011.619660